Il y a 20 h
Laboratory Simulation of an Analogue Black Hole Event Horizon Direct Observation of Hawking-like Radiation in a Quantum System Researchers have constructed a tabletop analogue of a black hole event horizon using a precisely configured Bose–Einstein condensate of ultracold atoms. This system replicates the kinematic conditions under which outgoing waves are trapped at a sonic horizon, mimicking the causal boundary of a gravitational black hole where escape velocity exceeds the local speed of propagation.The experiment employs a flowing atomic medium in which the flow velocity transitions from subsonic to supersonic, establishing an effective metric analogous to the Painlevé–Gullstrand form of the Schwarzschild spacetime. Phonons propagating against the supercritical flow are unable to escape the horizon, thereby forming a one-way membrane that prohibits retropropagation—precisely the defining feature of an astrophysical event horizon.Most significantly, the system spontaneously emits a steady flux of correlated phonon pairs across the horizon. One member of each pair is trapped inside the analogue interior, while the partner escapes to infinity as detectable thermal radiation. Spectral analysis confirms that this emission follows a Planckian distribution with a temperature proportional to the surface gravity of the analogue horizon, in quantitative agreement with Hawking’s original prediction for quantum field theory in curved spacetime:TH=ℏκ2πkBT_H = \frac{\hbar \kappa}{2\pi k_B}T_H = \frac{\hbar \kappa}{2\pi k_B} where κ\kappa\kappa is the surface gravity determined by the spatial gradient of the flow velocity.Unlike astrophysical black holes, where direct detection of Hawking radiation is precluded by cosmic distances and minuscule temperatures (∼10−8\sim 10^{-8}\sim 10^{-8} K for a solar-mass black hole), this laboratory analogue operates at accessible energy scales and allows real-time measurement of the radiation spectrum, pair-correlation statistics, and stimulated emission responses.The platform requires no gravitational field or spacetime curvature; the effect emerges purely from the interplay of quantum fluctuations and the engineered dispersion relation in the flowing condensate. This decoupling of geometry from kinematics provides a controlled environment to probe open questions at the interface of quantum mechanics and general relativity, including information loss, trans-Planckian modes, and the thermodynamic arrow of time.Far from a destructive singularity, this miniature horizon is a precision instrument—one that transforms one of cosmology’s most elusive predictions into a verifiable laboratory phenomenon.
11,74 k
164
Le contenu de cette page est fourni par des tiers. Sauf indication contraire, OKX n’est pas l’auteur du ou des articles cités et ne revendique aucun droit d’auteur sur le contenu. Le contenu est fourni à titre d’information uniquement et ne représente pas les opinions d’OKX. Il ne s’agit pas d’une approbation de quelque nature que ce soit et ne doit pas être considéré comme un conseil en investissement ou une sollicitation d’achat ou de vente d’actifs numériques. Dans la mesure où l’IA générative est utilisée pour fournir des résumés ou d’autres informations, ce contenu généré par IA peut être inexact ou incohérent. Veuillez lire l’article associé pour obtenir davantage de détails et d’informations. OKX n’est pas responsable du contenu hébergé sur des sites tiers. La détention d’actifs numériques, y compris les stablecoins et les NFT, implique un niveau de risque élevé et leur valeur peut considérablement fluctuer. Examinez soigneusement votre situation financière pour déterminer si le trading ou la détention d’actifs numériques vous convient.